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Abstract. SET-PR is a novel case-based recognizer that is robust to three kinds 
of input errors arising from imperfect observability, namely missing, mislabeled 
and extraneous actions. We extend our previous work on SET-PR by empirical-
ly studying its efficacy on three plan recognition datasets. We found that in the 
presence of higher input error rates, SET-PR significantly outperforms alterna-
tive approaches, which perform similarly to or outperform SET-PR in the pres-
ence of no input errors. 
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1 Introduction 

A plan recognizer observes the actions executed by an actor and attempts to infer the 
actor’s plan. A plan recognizer typically receives its input observations (of actions) 
from a lower-level action recognition system that can be noisy. A sophisticated plan 
recognizer therefore needs to relax the assumption of perfect observability and expect 
at least three kinds of input errors: a mislabeled action occurs in an input when an 
actor’s true action is recognized as some other action; a missing action occurs when a 
true action is unrecognized (i.e., classified as a non-action); and an extraneous action 
occurs when a non-action is classified as some valid action. 

Single-Agent Error-Tolerant Plan Recognizer (SET-PR) is a novel case-based plan 
recognizer that has shown promise in tolerating these kinds of input errors. We previ-
ously introduced SET-PR and highlighted its representation and reasoning techniques 
(Vattam, Aha, & Floyd 2014). This paper extends our preliminary empirical study of 
SET-PR, which was limited to just one dataset (the Blocks World domain) (Vattam, 
Aha, & Floyd 2015). Here we conduct a more comprehensive empirical investigation 
of SET-PR by (1) expanding the scope of the investigation to three datasets (Blocks 
World, Linux, and Monroe), (2) adopting a wider range of plan-recognition perfor-
mance metrics, and (3) comparing the performance of SET-PR to baseline algorithms. 

This paper is organized as follows. Section 2 describes related work on plan recog-
nition. Section 3 gives an overview of SET-PR including its novel plan representation 



and retrieval mechanism. Section 4 presents our more comprehensive study of SET-
PR, including the hypotheses we address, data used, evaluation method, empirical 
results, and their analysis. In this investigation, we found that SET-PR significantly 
outperformed the baseline algorithms in the presence of higher levels of input error, 
although the baselines performed similar to or outperformed SET-PR in the presence 
of no input errors. We conclude and discuss future research plans in Section 5. 

2 Related Research 

Early work on plan recognition (e.g., Kautz & Allen, 1986) assumed that the observed 
actor’s actions follow a hierarchical plan structure, requiring the plan recognizer to 
infer plans and sub-plans at multiple abstraction levels. However, it assumed perfect 
observability, which is unrealistic. Since then, a number of important probabilistic 
(e.g., Charniak & Goldman, 1993; Bauer, 1994; van Beek, 1996) and statistical pars-
ing approaches (e.g., Pynadath & Wellman, 1995; Geib & Goldman, 2009) have been 
proposed that address issues of uncertainty. They frame plan recognition as a problem 
of probabilistic inference in a stochastic process that models the actor’s action execu-
tion. While this offers a general and coherent framework for modeling different 
sources of uncertainty, they have not focused on problems due to imperfect observa-
bility. In contrast, activity recognition (Duong et al., 2005) algorithms, which apply 
signal processing techniques to discretize sensor information into coherent actions, 
have addressed imperfect observability issues. Bridging the gap between low-level, 
often noisy activity models and higher-level plans remains a research challenge. 

Recently Ramirez and Geffner (2010) proposed a novel approach to plan recogni-
tion by formulating it in terms of plan synthesis and solving it using off-the-shelf 
planners. They extended their approach to perform plan recognition in POMDP set-
tings (Ramirez & Geffner 2011), which they claim can tolertae different kinds of 
input errors. They demonstrated that it tolerates one kind of input error, namely miss-
ing actions (i.e., incomplete observations). However, like most plan recognition ap-
proaches theirs is “model-heavy”; they require accurate models of an actor’s possible 
actions and how those actions interact to accomplish different goals. Engineering 
these models is difficult and time consuming. Furthermore, these plan recognizers 
perform poorly when confronted with novel situations and are brittle when the operat-
ing conditions deviate from model parameters.  

SET-PR exemplifies case-based plan recognition (CBPR), a model-lite, lesser stud-
ied approach to plan recognition. Existing CBPR approaches (e.g., Cox & Kerkez, 
2006; Tecuci &Porter, 2009) eschew generalized models and instead use plan librar-
ies that contain plan instances that can be gathered from experience. CBPR algorithms 
can respond to novel inputs outside the scope of their plan library using plan adapta-
tion techniques. However, to our knowledge they have not been designed for imper-
fect observability, which is the unique focus of SET-PR.  

Cox and Kerkez (2006) proposed a novel representation for storing and organizing 
plans in a plan library, modeled as action-state pairs and abstract states, which counts 
the number of instances of each type of generalized state predicate. SET-PR uses a 



similar representation, but stores and processes plans in an action-sequence graph. 
Our encoding was inspired by planning encoding graphs (Serina, 2010). These are 
syntactically similar to our graphs but encode a planning problem while ours instead 
encode a solution (i.e., a grounded plan). 

Plan retrieval is an important step in CBPR algorithms and presents an efficiency 
bottleneck. Our previous contribution presented an algorithm for speeding plan re-
trieval in SET-PR that uses plan projection and clustering (Maynord, Vattam, & Aha 
2015). Sánchez-Ruiz and Ontañón (2014) use Least Common Subsumer Trees for the 
same purpose, but they are not applicable to our representation. 

3 SET-PR 

3.1 Representation 

SET-PR learns to recognize plans from a given plan library 𝐶 (i.e., a set of cases). 
Each case is a tuple 𝑐 = (𝜋,𝑔), where 𝜋 is a known plan (the problem part), and 𝑔 is 
its corresponding goal (the solution part). 

3.1.1 Action state sequences. Each case’s plan 𝑐.𝜋 is modeled as an action state 
sequence 𝕤 = 〈(𝒂𝟎, 𝒔𝟎), … , (𝒂𝒏, 𝒔𝒏)〉, where each action 𝒂𝒊 is a ground operator in the 
planning domain, and 𝒔𝒊 is a ground state obtained by executing 𝒂𝒊 in 𝒔𝒊−𝟏, with the 
caveat that 𝒔𝟎 is an initial state, 𝒂𝟎 is null, and 𝒔𝒏 is a goal state. An action 𝒂 in 
(𝒂, 𝐬) ∈ 𝕤 is a ground literal 𝒑 = 𝑝(𝑜1: 𝑡1, … , 𝑜𝑛: 𝑡𝑛), where 𝑝 ∈ 𝑷 (a finite set of 
predicate symbols), 𝑜𝑖 ∈ 𝑶 (a finite set of objects), and 𝑡𝑖 is an instance of 𝑜𝑖  (e.g., 
stack(block:A, block:B)). A state 𝒔 in (𝒂, 𝐬) ∈ 𝕤 is a set of ground literals (e.g., 
{on(block:A,block:B), on(block:B,substrate:TABLE)}).  

Inputs to SET-PR consist of sequences (observed parts of a plan). An input to SET-
PR 𝕤𝒒𝒒𝒒𝒒𝒒 is also modeled as an action state sequence. However, unlike a plan, 𝒔𝟎 and 
𝒔𝐧 in 𝕤𝒒𝒒𝒒𝒒𝒒 need not be initial and goal states, and 𝒂𝟎 need not be null. 

Each case’s goal 𝑐.𝑔 is modeled as a task to be achieved (using the HTN vocabu-
lary) or as a state to be achieved depending on the domain. This reduces a goal to an 
instance of a task (𝑐.𝑔 is an 𝒂) or a state (𝑐.𝑔 is a 𝒔) respectively. The representation 
of a goal can be flexible because it is the solution part of a case and does not partici-
pate in matching during retrieval. 

3.1.2 Action Sequence Graphs. An action sequence graph is a graphical representa-
tion of an action state sequence, which is propositional. This graph preserves the to-
pology of the sequence it encodes (including the order of the propositions and their 
arguments). We mentioned that plans are modeled as action state sequences. SET-PR 
does not store the propositional representation of an action state sequence 𝕤. Instead, 𝕤 
is encoded as an action sequence graph ℇ𝕤 and stored in 𝑐.𝜋. Similarly an input se-
quence 𝕤𝒒𝒒𝒒𝒒𝒒 is also encoded as an action sequence graph ℇ𝕤𝒒𝒒𝒒𝒒𝒒and used in retriev-
al. 

A labeled directed graph 𝐺 is a 3-tuple 𝐺 = (𝑉,𝐸, 𝜆), where 𝑉 is a set of vertices, 
𝐸 ⊆ 𝑉 × 𝑉 is a set of edges, and 𝜆:𝑉 ∪ 𝐸 → 2𝐿 assigns labels to vertices and edges. 
Here, an edge 𝑒 = [𝑣,𝑢] ∈ 𝐸 is directed from 𝑣 to 𝑢, where 𝑣 is the edge’s source 



node and 𝑢 is the target node. Also, 𝐿 is a finite set of symbolic labels and 2𝐿 is a set 
of all the multisets on 𝐿; this permits multiple non-unique labels for a node or edge. 

The union 𝐺1 ∪ 𝐺2 of two graphs 𝐺1 = (𝑉1,𝐸1, 𝜆1) and 𝐺2 = (𝑉2,𝐸2, 𝜆2) is the graph 
𝐺 = (𝑉,𝐸, 𝜆), where 𝑉 = 𝑉1 ∪ 𝑉2, 𝐸 = 𝐸1 ∪ 𝐸2, and  

𝜆(𝑥) = �
𝜆1(𝑥), 𝑖𝑖 𝑥 ∈ (𝑉1 ∖ 𝑉2) ⋁ 𝑥 ∈ (𝐸1 ∖ 𝐸2)
𝜆2(𝑥), 𝑖𝑖 𝑥 ∈ (𝑉2 ∖ 𝑉1) ⋁ 𝑥 ∈ (𝐸2 ∖ 𝐸1)
𝜆1(𝑥) ∪ 𝜆2(𝑥), 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒                         

 

Definition: Given ground atom 𝒑 representing an action 𝒂 or a fact of state 𝒔 in the 
𝑘𝑡ℎ action-state pair (𝒂, 𝒔)𝑘 ∈ 𝕤, a predicate encoding graph is a labeled directed 
graph ℇ𝑝(𝒑) = �𝑉𝑝,𝐸𝑝 , 𝜆𝑝� where: 

𝑉𝑝 = �
�𝐴𝑘𝑝 , 𝑜1, … , 𝑜𝑛� , if 𝒑 is an action    

�𝑆𝑘𝑝 , 𝑜1, … , 𝑜𝑛� , if 𝒑 is a state fact
 

𝐸𝑝 =

⎩
⎨

⎧�𝐴𝑘𝑝 , 𝑜1��� �𝑜𝑖 , 𝑜𝑗�
𝑖=1,𝑛−1;𝑗=𝑖+1,𝑛

 if 𝒑 is an action   

�𝑆𝑘𝑝 , 𝑜1��� �𝑜𝑖 , 𝑜𝑗�
𝑖=1,𝑛−1;𝑗=𝑖+1,𝑛

 if 𝒑 is a state fact
 

𝜆𝑝 �𝐴𝑘𝑝� = �𝐴𝑘𝑝� ;  𝜆𝑝 �𝑆𝑘𝑝� = �𝑆𝑘𝑝� ;  𝜆𝑝(𝑜𝑖) = {𝑡𝑖} for 𝑖 = 1, … ,𝑛 

𝜆𝑝 ��𝐴𝑘𝑝 , 𝑜1�� = �𝐴𝑘𝑝
0,1� ;  𝜆𝑝 ��𝑆𝑘𝑝 , 𝑜1�� = �𝑆𝑘𝑝

0,1� ; 

∀�𝑜𝑖 , 𝑜𝑗� ∈ 𝐸𝑝, 𝜆𝑝��𝑜𝑖 , 𝑜𝑗�� = �
�𝐴𝑘𝑝

𝑖,𝑗� , if 𝒑 is an action     

�𝑆𝑘𝑝
𝑖,𝑗� , if 𝒑 is a state fact

 

Interpretation: Suppose we have a ground literal 𝒑 =  𝑝(𝑜1: 𝑡1, … , 𝑜𝑛: 𝑡𝑛). De-
pending on whether 𝒑 represents an action or a state fact, the first node of the predi-
cate encoding graph ℇ𝑝(𝒑) is either 𝐴𝑘𝑝or 𝑆𝑘𝑝 (labeled �𝐴𝑘𝑝� or �𝑆𝑘𝑝�). Suppose it is 
an action predicate. 𝐴𝑘𝑝 is then connected to the second node of this graph, the object 

node 𝑜1 (labeled {𝑡1}), through the edge �𝐴𝑘𝑝 , 𝑜1� (labeled �𝐴𝑘𝑝
0,1�). Next, 𝑜1 is con-

nected to the third node 𝑜2 (labeled {𝑡2}) through the edge [𝑜1 , 𝑜2] (labeled �𝐴𝑘𝑝
1,2�), 

then to the fourth node 𝑜3 (labeled {𝑡3}) through the edge [𝑜1, 𝑜3] (labeled �𝐴𝑘𝑝
1,3�), 

and so on. Suppose also the third node 𝑜2 is connected to 𝑜3 through 𝐴𝑘𝑝
2,3, to 𝑜4 

through 𝐴𝑘𝑝
2,4, with appropriate labels, and so on. 

Example: Suppose predicate 𝒑 =  𝑝𝑝𝑝(𝑏𝑏𝑏𝑏𝑏: 𝑎, 𝑏𝑏𝑏𝑏𝑏: 𝑏, 𝑡𝑡𝑡𝑡𝑡: 𝑡) appears in the 
fifth (𝑘 = 5) action-state pair of an observed sequence of actions. The nodes of this 
predicate are �𝐴5𝑝𝑝𝑝�,  {𝑎}, {𝑏}, and {𝑡}. The edges are �𝐴5𝑝𝑝𝑝 , 𝑎� , [𝑎, 𝑏], [𝑎, 𝑡], and 



[𝑏, 𝑡], with respective labels �𝐴5𝑝𝑝𝑝
0,1 �, �𝐴5𝑝𝑝𝑝

1,2 �, �𝐴5𝑝𝑝𝑝
1,3 �, and  �𝐴5𝑝𝑝𝑝

2,3 �. The predicate 
encoding graph for 𝒑 is shown in Figure 1. 

Definition: An action sequence graph of an action state sequence 𝕤 is a labeled di-
rected graph ℇ𝕤 = ⋃ �ℇ(𝒂)⋃ ℇ(𝒑)𝒑∈𝒔 �(𝒂,𝒔)∈𝕤 , a union of the predicate encoding graphs 
of the action and state facts in 𝕤. 

Figure 2 shows an example of a sample action state sequence and its corresponding 
action sequence graph. 

3.2 Retrieval 

Case retrieval requires a similarity metric. Because we represent the input and the 
stored plans as graphs, our metric uses graph matching; this can be formulated as the 
task of computing the maximum common subgraph (MCS) of two graphs. Computing 
the MCS between two or more graphs is an NP-Complete problem, restricting ap-
plicability to only small plan recognition problems. Alternatively, a plethora of ap-
proximate graph similarity measures exist. For example, similarity metrics that com-
pute graph degree sequences have been used successfully to match chemical struc-
tures (Raymond & Willett, 2002). 

Figure 1: A predicate encoding graph corresponding to 𝒑 =  𝑝𝑝𝑝(𝑏𝑏𝑏𝑏𝑏: 𝑎, 𝑏𝑏𝑏𝑏𝑏: 𝑏, 𝑡𝑡𝑡𝑡𝑡: 𝑡) 

Figure 2: An example action-state sequence 𝕤 and corresponding action sequence graph ℇ𝕤 



In SET-PR, we use one of the degree sequence similarity metrics called Johnson’s 
similarity metric (Johnson, 1985). This metric, denoted as sim𝑠𝑠𝑠, computes the simi-
larity between plans based on the approximate structural similarity of their graph 
representations. Previously, we tried alternative degree sequence metrics and found 
that Johnson’s metric performed the best (Vattam, Aha & Maynord, 2015). 

Let 𝐺1 and 𝐺2 be the two action-sequence graphs. To compute their similarity, we 
first separate the set of vertices in each graph into 𝑙 partitions by label type, and then 
sort them in a non-increasing total order by degree (of a vertex 𝑣 is the number of 
edges that touch 𝑣). Let 𝐿1𝑖  and 𝐿2𝑖  denote the sorted degree sequences of a partition 𝑖 
in the action-sequence graphs 𝐺1 and 𝐺2, respectively. An upper bound on the number 
of vertices 𝑉(𝐺1,𝐺2) and edges 𝐸(𝐺1,𝐺2) of the MCS of these two graphs can then be 
computed as: 

�mcs(𝐺1,𝐺2)� = 𝑉(𝐺1,𝐺2) + 𝐸(𝐺1,𝐺2), where 

𝑉(𝐺1,𝐺2) = ∑ 𝑚𝑚𝑚��𝐿1𝑖 �, �𝐿2𝑖 ��𝑙
𝑖=1 , and 

𝐸(𝐺1,𝐺2) = �∑ ∑
𝑚𝑚𝑚��𝐸�𝑣1

𝑖,𝑗��,�𝐸�𝑣2
𝑖,𝑗���

2

𝑚𝑚𝑚��𝐿1
𝑖 �,�𝐿2

𝑖 ��
𝑗=1

𝑙
𝑖=1 �,  

where 𝑣1
𝑖,𝑗 denotes the 𝑗th vertex of the 𝐿1𝑖  sorted degree sequence, and 𝐸�𝑣1

𝑖,𝑗� de-
notes the set of edges connected to 𝑣1

𝑖 ,𝑗. Johnson’s similarity metric is given by: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝐺1,𝐺2) =
��mcs(𝐺1,𝐺2)��2

|𝐺1| ∙ |𝐺2|  

Two plans that are similar in structure can differ drastically in semantics. For in-
stance, a plan to travel to a grocery store to buy milk might coincidentally be structur-
ally similar to a plan to travel to the airport to receive a visitor. To mitigate this issue, 
we use a weighted combination of structural and semantic similarity, denoted as 
sim𝑜𝑜𝑜, as our final similarity metric:  

sim(𝐺1,𝐺2) = α sim𝑠𝑠𝑠(𝐺1,𝐺2) + (1 − α)sim𝑜𝑜𝑜(𝐺1,𝐺2),  

where sim𝑜𝑜𝑜(𝐺1,𝐺2) =
𝑂𝕤∩𝑂𝜋𝑖
𝑂𝕤∪𝑂𝜋𝑖

 is the Jaccard coefficient of the set of (grounded) ob-

jects in 𝐺1 and 𝐺2, and 𝛼 (0 ≤ 𝛼 ≤ 1) governs the weights for sim𝑠𝑡𝑡 and sim𝑜𝑜𝑜. 

SET-PR matches an input action-sequence graph 𝕤𝒒𝒒𝒒𝒒𝒒 with each case 𝑐 = (𝜋,𝑔) in 
𝐶 using sim(𝕤𝒒𝒒𝒒𝒒𝒒, 𝑐.𝜋), and retrieves the top-ranked matching case (k=1 in k-NN). 
This case’s plan is output as the recognized plan and its goal is output as the recog-
nized goal.  

SET-PR keeps track of its most recent previous prediction and uses it to resolve 
ambiguity if multiple cases are retrieved with nearly similar scores. In other words, 
selection preference favors a case that maintains continuity in plan prediction. If none 
of the cases in that set match the previous prediction, then one of them is selected 
randomly. 



3.3 Error Tolerance 

The ability of SET-PR to tolerate input errors is a direct benefit of its representation 
and retrieval mechanism. By adding state information to plan representation, SET-PR 
reduces the overreliance on action information (which causes poor performance when 
they are error-prone) and increases the total amount of information that is used for 
recognition. SET-PR’s graph representation of plans permits inexact matching, trad-
ing off higher recall for lower precision. We claim that this tradeoff allows SET-PR to 
generalize better in the presence of input errors compared to other approaches that 
favor propositional representations and symbol matching, and test this in Section 4. 

4 Empirical Evaluation 

We empirically test the following claim: for the task of plan recognition, SET-PR’s 
approach, which employs a graph-based representation and similarity metric, offers 
more robustness to input errors compared to alternative CBPR approaches that use 
propositional representation and symbol matching. We test this claim by subjecting 
the approaches to increasing levels of input errors. At each level, we measure and 
compare their plan recognition performance. We perform this experiment across three 
different plan recognition datasets and note if similar performance trends emerge.  

In the following sections we describe the approaches tested, performance metrics, 
datasets used, methodology, the results and their analysis. 

4.1 Compared CBPR Approaches 

1. SET-PR: This approach uses action sequence graph representation and Johnson’s 
similarity metric for performing plan recogntion as described above. 

2. EDIT: This approach uses propositional representation and an ordered symbolic 
similarity metric for performing plan recognition. It treats inputs and plans as 
symbol sequences and computes their Edit distance (Levenshtein 1966). 

3. JACC: This approach uses propositional representation and an unordered symbolic 
similarity metric for performing plan recognition. It treats inputs and plans as a set 
of action propositions (𝐴1 and 𝐴2) and computes their Jaccard distance (1 −
(𝐴1 ∩ 𝐴2 𝐴1 ∪  𝐴2)⁄ ). 

4. RAND: This is the baseline condition. It performs plan recognition by randomly 
selecting a plan from the plan library in response to its inputs. 
 

Table 1. Datasets used in this empirical study 



4.2 Datasets Used 

 
In this study we used three datasets (Table 1). We repeated our evaluation method 
described below in all three datasets. Blocks World is a synthetic dataset that we gen-
erated using the HTN planner SHOP2 (Nau et al., 2003), which we modified to cap-
ture state information in the generated plans. Monroe (Blaylock & Allen, 2005) and 
Linux (Blaylock & Allen, 2004) are two datasets that are commonly used to assess 
plan recognizers. Monroe is also a synthetic dataset generated using SHOP2, while 
Linux is a corpus of plans collected from human users performing assigned tasks. 
Because the plans in these latter two datasets contain no state information, SET-PR’s 
plans also contain only action information. This reduces the size of the encoding of 
the plans in these two datasets. 

4.3 Evaluation Method 

For each dataset, we developed an error simulator that takes as input a plan (𝜋), an 
error-type (𝑡), and an error-percentage (𝑝). It outputs 𝜋𝑒𝑒𝑒 , which contains 𝑝% errors 
of type 𝑡. The values for 𝑡 include mislabeled (MLAB), missing (MSNG), extraneous 
(EXTR), and mixed (MXD). For MLAB, a specified percentage of actions was ran-
domly chosen, and each was replaced with another action randomly chosen from the 
domain. For MSNG, a percentage of actions was randomly chosen, and each was 
replaced with an unidentified marker ‘*’. For EXTR, a percentage of randomly cho-
sen actions from the domain were introduced at random locations in the plan. For 
MXD, a uniform distribution of all three types of errors was introduced. 

For each dataset 𝐷, we obtained a set of datasets 𝐷𝑡,𝑝 that combine 𝑡 = {MLAB, 
MSNG, EXTR, MXD} and 𝑝 = {0, 0.15, 0.3, 0.45, 0.6}. For example, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,0.6 
is a Monroe version containing plans with 60% mixed error. 

For each 𝐷𝑡,𝑝, we tested our compared conditions (SET-PR, EDIT, JACC, and 
RAND) using five-fold cross-validation (with shuffle). That is, for each plan in the 
test set, we incrementally queried the training set to predict a plan. For example, if a 
test plan had four actions {𝑎1, 𝑎2, 𝑎3, 𝑎4}, the evaluator performed 4 queries {𝑎1}, 
{𝑎1, 𝑎2}, {𝑎1, 𝑎2, 𝑎3}, and {𝑎1, 𝑎2, 𝑎3, 𝑎4} to obtain a predicted plan after observing 
each action in succession. For a prediction to be correct, the plan class of the predict-
ed plan must match the plan class of the test plan. 

Table 2. A sample convergence matrix 



For each compared condition for each 𝐷𝑡,𝑝, the results of the cross validation was 
tabulated in a convergence matrix (example in Table 2). The rows in matrix are plan 
indices and columns are action indices. After observing the 𝑗𝑡ℎ action of the 𝑖𝑡ℎ plan 
in the test set, cellij registers (1) the predicted value (the goal class), and (2) a Boolean 
value indicating a correct or incorrect prediction. We maintain two additional col-
umns, total number of actions (#acts) per row and correct predictions (#correct) per 
row. 

From the convergence matrix, we derive a confusion matrix (Table 3) by counting 
the instances where the predicted plan class agrees or disagrees with the actual class.  

4.4 Performance Metrics 

We defined the following four plan recognition performance metrics from the conver-
gence matrix depicted in Table 2: 

Percent convergence: Convergence indicates whether the final prediction in each 
row was correct. For each condition, the percentage of True values is computed. 

Convergence point: If a prediction converged, the convergence point (CP) is the 
point in the input that the recognizer starts to output only the correct prediction. A 
smaller value for this metric indicates a better performance. For each condition, we 
also compute the average convergence point. 

r-Accuracy: We can compute row-wise prediction accuracy as the ratio of the total 
number of correct predictions in a row versus the total number of actions observed in 
that row (#correct/#acts). We compute r-Accuracy as the average of this value for 
each test plan. It has often been referred to as “precision” (e.g., Blaylock & Allen 
2006) in plan recognition literature, which differs from the traditional meaning of 
precision in the general classification literature. Table 3 displays the traditionally-
defined precision and recall values from the confusion matrix.  

c-Accuracy: We calculate column-wise prediction accuracy as the ratio of the total 
number of or correct predictions in a column versus its total number of plans (#correct 
in col/#plans in col). c-Accuracy is the average of these values. 

From the confusion matrix depicted in Table 3, we define a final performance met-
ric, F1-Score, which is the harmonic mean of average precision and recall. 

4.5 Results 

Figure 3 shows the plots for percent convergence and convergence point of SET-PR, 
EDIT, JACC, and RAND at varying levels of input errors of type MXD (mixed error) 

Table 3. Confusion matrix 



for the three datasets. These are mean values averaged over five-fold cross validation. 
Similarly, Figure 4 shows the plots for mean r-Accuracy and c-Accuracy, and Figure 
5 shows plots for the mean F1-Score. Due to space restrictions, we do not show the 
plots and other significance test results for other error types. However, we note that 
the trends observed in MXD hold for other error conditions as well. We highlight 
MXD because it contains a uniform distribution of the three kinds of errors (we chose 
uniform distribution because we currently lack domain-specific error models). 

 
 % Convergence Convergence point 

 
B 
L 
O 
C 
K 
S 
   
 

M 
O 
N 
R 
O 
E 
   
 

L 
I 
N 
U 
X 
 

  

4.6 Analysis 

At 0% error level, the plots in Figures 3, 4 and 5 indicate the following. (1) For 
Blocks: with the exception of one metric, EDIT and SET-PR perform comparably, but 
JACC performs poorly, closer to RAND. (2) For Monroe: with the exception of one 
metric, all three perform comparably. (3) For Linux: SET-PR shows performance 
advantage in 3 out of 5 metrics, while EDIT and JACC perform comparably with each 

Figure 3. Percent Convergence and Convergence-point vs. Error level for the 3 da-
tasets 



other. Overall, for 0% error, in majority of the experiments, SET-PR’s performance is 
comparable to EDIT, JACC or both.  
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At 15% error level, we see small to negligible performance declines for SET-PR, but 
more declines for EDIT and JACC. Finally, at higher levels of error, we see moderate 
declines in performance for SET-PR, but steep declines for EDIT and JACC. This 
trend can be observed across datasets and across different error types in a majority of 
experiments. 

To assess the impact of the two independent factors (CBPR approach and error 
level) on the value of a performance metric, we compared the means of the perfor-
mance metric values across these two factors.  For each dataset and for each error 
type, we subjected this two factor data to a two-way ANOVA test to measure the 
statistical significance of the outcomes of the comparison, amounting to a total of 60 
tests. In all 60 tests, there was a statistically significant effect observed for both fac-
tors as well as for their interaction (p < 0.05 for all tests; for error level, F(4,59) 
ranged between 650 and 2229; for CBPR approach, F(3,59) ranged between 1042 and 
17654; and their interaction factor, F(12,59) ranged between 100 and 409). 

Figure 4. Mean r-Accuracy and c-Accuracy vs. Error level for the 3 datasets 

 



From these results we can conclude that SET-PR has a significantly higher toler-
ance for the three kinds of input errors compared to EDIT and JACC although the 
latter two can perform similarly to or outperform SET-PR in the 0% error condition. 
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5 Discussion 

In Section 3.3 we argued that the superior performance of SET-PR under imperfect 
observability can be attributed to two factors: (1) the content of the plans, which in-
cludes action and state information, and (2) the graph representation of the plans, 
which permits inexact matching. Our evaluation lends support to (2) because only 
SET-PR uses graph representations. Regarding (1), in our earlier pilot studies with 
Blocks world (Vattam, Aha, & Floyd 2015), we compared SET-PR with and without 
state information, keeping all else constant. There, we found preliminary evidence to 
support (1), but our current investigation does not focus on (1) because no state in-
formation is included in SET-PR for the Monroe and Linux plan libraries. 

One of the limitations of our study is that we do not compare SET-PR with other 
state-of-the-art plan recognizers. In the future, we plan to obtain and run these exper-
iments with other well-known plan recognizers. 

Given that graph matching is generally considered a hard problem, what can we 
say about the computational efficiency of SET-PR’s matching process? Using its 
degree sequence metric, others showed that the similarity between two graphs can be 
computed in 𝑂(𝑛 ∙ 𝑙𝑙𝑙 𝑛) time, where 𝑛 = 𝑚𝑚𝑚𝑖��𝐿1𝑖 �, �𝐿2𝑖 �� (Raymond & Willett, 
2002). 

Figure 5: Mean F1-Score vs. Error level for the 3 datasets 



Without efficient indexing techniques, plan retrieval time scales linearly with the 
size of SET-PR’s library 𝐶. This can be prohibitively expensive for online plan 
recognition. Thus, we use Plan Projection Clustering (PPC), a method to increase the 
plan retrieval speed of SET-PR (Maynord, Vattam, & Aha 2015). PPC is a domain-
general approach for organizing SET-PR’s plans in a hierarchy. It employs a metric 𝑑 
(e.g., Johnson’s similarity metric) that measures distances among plans. PPC com-
putes 𝑑(𝑝1, 𝑝2) for each pair of plans 𝑝1, 𝑝2 ∈ 𝐶 to produce a distance matrix 𝑀. PPC 
then projects 𝑀 into 𝑁-dimensional Euclidean space by applying multi-dimensional 
scaling (Kruskal, 1964). All cases are placed into a single group constituting the top 
level of a hierarchy. We then recursively apply a clustering algorithm 𝑚 to these cas-
es until the desired depth of the hierarchy, 𝑘, is reached.  Hyper-parameters 𝑑, 𝑁, 𝑚, 
and 𝑘 can be tuned for optimal performance.  

PPC processes a query 𝑞 by recursively matching it down the hierarchy. At each 
level, 𝑑 is used to determine the distance between 𝑞 and the case 𝑐 closest to each 
candidate cluster center. At each step, 𝑞 is matched to a cluster for which this distance 
is smallest. Once a leaf is reached, 𝑞’s nearest neighbor is retrieved.  

Our pilot study (Maynord, Vattam, & Aha 2015) indicated that PPC can reduce re-
trieval time by up to 72% while sacrificing only a small amount in retrieval accuracy 
(approximately 4%), because queries are partial (rather than complete) plans. 

6 Conclusions and Future Work 

We described SET-PR, a case-based plan recognition algorithm that represents plans 
as action sequence graphs. Unlike most prior algorithms, we designed SET-PR to be 
tolerant of input errors in the observed actions (i.e., missing, mislabeled, or extra ac-
tion labels). We use Johnson’s (1985) similarity metric for plan retrieval in SET-PR 
because it is an approximation of the maximal common subgraph function for match-
ing graphs. In our empirical studies on plan recognition tasks involving three data 
sets, which we modified by adding input errors, we compared the performance of 
SET-PR with alternative approaches that use propositional representation and similar-
ity functions for plan retrieval. We found that SET-PR’s use of a graph representation 
for plans contributed to its superior performance when error rates are high. This com-
plements earlier work (Vattam, Aha, & Floyd 2015) that showed the incorporation of 
state information in its plan representation is another contributing factor. 

In our future work, we will compare the performance of SET-PR versus other 
state-of-the-art plan recognition algorithms. We also plan to investigate more sophis-
ticated graph similarity functions (e.g., graph kernels) and compare them versus SET-
PR’s current similarity function. Current plan recognizers, including SET-PR, assume 
that the observed actor’s plans remains static during plan recognition. We will relax 
this assumption and extend SET-PR to tolerate dynamics changes to an actor’s plans. 
Finally, we plan to integrate SET-PR with sensory perceptual systems on simulated 
and real robotic platforms so that we can study its performance on the ground in real 
time. 
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